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Abstract

This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlin-
ear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian’s polyno-
mials in the Adomian’s decomposition method. The numerical results of this method are compared with the exact
solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational
iteration method is a powerful mathematical tool for solving nonlinear problems.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we shall solve a nonlinear system arising in thermoelasticity, the governing equations are ([5,16,18,20],
and the references therein):

g — a(tte, Qg + b(uy, 0)0, = f(x,1), x€R' (L.1)
c(uty, 0)0, + b(uty, )iy — d(0)0, = g(x,1), t>0 (1.2)

with initial conditions:
u(x,0) = u°(x), w(x,0) =u'(x), 0(x,0) = 6"(x), (1.3)

where u = u(x, t) is the body displacement from equilibrium and 0 = 6(x,¢) is the difference of the body’s temperature
from a reference 7,y = 0, and subscripts denote partial derivatives, a, b, ¢ and d are given smooth functions. The system
(1.1)—(1.3) is typically arises in one dimensional nonlinear thermoelasticity, in this case u(x, ) and 0(x,t) are the dis-
placement and temperature difference, respectively. For more details about the physical meaning of the model see [5,16].

In recent years a great deal of attention has been devoted to study the variational iteration method given by J.H. He
for solving a wide range of problems whose mathematical models yield differential equation or system of differential
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equations [1-4,6-11,17,19]. For more details about the advantages of the variational iteration method over the Ado-
mian decomposition method see [2].

The paper is organized as follows, in Section 2 we apply the well-known variational iteration method [6-11] for solv-
ing the system (1.1) and (1.2). In Section 3 an artificial model is used to show the efficiency of the method and numerical
experiments are presented. Finally in Section 4 conclusions are given.

2. The variational iteration method

In this Section, we use the following non-homogeneous, nonlinear system of partial differential equations to illus-
trate the basic idea of the variational iteration method [6-11].

Liu(x,t) + Ni(u(x, 1), 0(x, 1)) = f(x,1), (2.1)
Ly0(x, 1) + Na(u(x, 1), 0(x, 1)) = g(x, 1), (22)
where L; and L, are linear differential operators with respect to time and N; and N, are nonlinear operators and f{x, t),

g(x, 1) are given functions. According to the variational iteration method, we can construct a correct functional as fol-
lows [6-11]:

Upi1(x, 1) = u,(x, 1) +/0 A (D) [Lyuy (x, T) + Ny (i, (x, 7), (~)n(x, 7)) — f(x,7)]dr, (2.3)
0,1 (x,8) = 0,(x, 1) + /Or}uz(r) [L10,(x,7) + Na(it,(x, 7), g),,(x, 7)) — g(x,1)]dr, (2.4)

where 4; and 4, are general Lagrange multipliers, which can be identified optimally via variational theory [12—15]. The
second term on the right-hand side in (2.3) and (2.4) are called the correction and the subscript # denotes the nth order
approximation. Under a suitable restricted variational assumptions (i.e. i, and 0, are considered as a restricted varia-
tion), we can assume that the above correctional functional are stationary (i.e. ou,,+; = 0 and 60,4, = 0), then the La-
grange multipliers can be identified. Now we can start with the given initial approximation and by the above iteration
formulas we can obtain the approximate solutions.

3. Numerical example

In this section, we apply the variational iteration method for an artificial model like (1.1) and (1.2) with a, b, ¢, d, W0,
u' and 0° defined by

a(uy,0) =2 —u0, bu,0)=2+u,0,
c(u, ) =1, du,0)=20

and 1°(x) = 1/(1 + x?), u'(x) = 0, 0°(x) = 1/(1 + x?), and the right-hand side of (1.1) and (1.2) replaced by

2 2(14+A)(3x2 - 1) 2x(1 4 1)

(x,1) = — a(w,v) — ——=5b(w,v),
S == a0 — T b
1 4xt 2(3x* = 1)(1 +¢)
x,t) = ——c(w,v) — ———b(w,v) — —————=d(v),
) = g eln0) = o sbn) = = )
where a, b, ¢ and d are defined above and
—2x(1 +#) 1+¢
= ) =—— =~ = )= ——,
WSl =Tt v Sl =,

thus the exact solution u(x, ¢) and 0(x, ¢) of the system (1.1) and (1.2) is

1+7 1+¢

u(x,t):m, (X,[):m.
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To apply the variational iteration method, we construct the following correction functional:

t
Upi1(x, 1) = u, (x, 1) + / A1(7) [u,,“ — ait,,, + b0, — f(x, T)] dr, (3.1)
0
. b d -~ 1
0n+l(xv t) = 0,,()(?7 t) + / /“2(1) om +_unn - _0’1\:\' - _g(x7 T) dTa (32)
o c c c

where A, and /1, are Lagrange multipliers, aii,,, bénx,gﬁnﬂ and %én“ denote the restricted variations (i.e.
dai,,, = 0b0, = 6tu,, =20, =0). Making the above correction functional stationary:

t
Sty g1 (x,2) = Su,(x, 1) + 5/ 21(7) [un” —ait,,, + b0, — f(x, r)} dt
0
4 ~
— Sy (x, 1) + (Ardu,, — 210u,)| ., + / (4100, + i (=i, + b0y, — f(x,7))] de =0,
0

ot
50,1 (x, 1) = 80, (x, 1) + 8 / Ja(t) [em n gu _ C;l@nw - % a(x, f)} dr
JO

t
— 80, (x, 1) + 7200,]_, + / {7;/259” s (9 i, — 20, Lo, f))} dr = 0.
0 c c c

we obtain the following stationary conditions :
1-2(0) =0, 4() =0, (). =0, (3.3)
1+ )“IZ(T)L:t =0, /“,2(7) =0. (34)

The Lagrange multipliers, therefore, can be defined as the following forms:
Mr)=1—1t, JA(r)=-L (3.5)

Substituting Eq. (3.5) into the correction functional Egs. (3.1) and (3.2) we obtain the following iteration formulas:

U1 (X, 8) = up(x, ) + /t(r —t)[uy, — au,, + b0, — f(x,7)]dz, (3.6)
0

! b d
{(9,,[ +—u,, ——0
¢ ¢

Ny

O (r, ) = 0, (r, ) — / —%g(x, )| de. (3.7)

0
We start with initial approximations ug(x, t) = u(x,0), and 0y(x,?) = 0(x,0) and by the above formulas, we can obtain
uy(x,t) and 0y(x,?) as follows:

1

ug(x, 1) = T

+—————[P(105(1 +x2)° = 706 (=2 + x(7 + x(—=2 + 6x + 4x> +x°)))z
105(1+x2)6[ (105( ) ( (7+x( )

—35(=1 +x(=2+x(=2+x(6 + 4x + 8 + 3x%))))#

+42x(1 4 x — 3% + 338 + Ux(1 +x — 3x> +x3)* — 10x(—1 + 3x°)F)],

uy (x, ) = up(x,1)

1
W0 =11
-1
01(x,8) = 0o(x, 1) — |—————(#(30£x% + 24¢* + 15(1 +x%)*
1(x,2) = Op(x, 1) 15(1+x2)5(( ( )

(10 + 20x% — 30x*) — 30¢(—1 4 2x + 6 4 3x* 4 6x° + 2¢7))) |.

Proceeding as the same way, we can obtain u,(x, f) and 0,(x, t), and high order approximations. The numerical results of
this example is presented in the following Tables 1-4, we evaluated the numerical results using » = 2 terms approxima-
tion of the recurrence relations (3.6) and (3.7) at various values of the time ¢ (¢ = 0.25 and ¢ = 0.5). Tables 1-4 show the
exact solution, the numerical solution and the absolute error. However, many terms can be calculate in order to achieve
a high level of accuracy by the variational iteration method.
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Table 1
For t = 0.25, comparison of the numerical results with exact solution u(x, ) and the absolute error
X Exact solution Approximate solution Absolute error
5 0.0408540 0.0408654 1.14214E-05
6 0.0287105 0.0287162 5.66626E—06
7 0.0212469 0.0212500 3.11183E-06
8 0.0163443 0.0163462 1.84483E—-06
9 0.0129562 0.0129573 1.1607E—06
10 0.010519 0.0105198 7.6577E—-07
11 0.0087085 0.00870902 5.25173E-07
12 0.00732721 0.00732759 3.71954E—07
13 0.00624973 0.0062500 2.70692E—-07
14 0.0053932 0.0053934 2.01627E-07
15 0.00470117 0.00470133 1.53229E-07
Table 2
For ¢t =0.25, comparison of the numerical results with exact solution 6(x,?) and the absolute error
X Exact solution Approximate solution Absolute error
5 0.0479766 0.0480769 1.013071E—04
6 0.0337349 0.0337838 4.88405E—05
7 0.0249735 0.025000 2.648558E—-05
8 0.0192152 0.0192308 1.55626E—05
9 0.0152342 0.0152439 9.72698E—06
10 0.0123699 0.0123762 6.38473E—06
11 0.0102415 0.0102459 4.36097E—06
12 0.00861761 0.00862069 3.07843E—06
13 0.00735071 0.00735294 2.23417E-06
14 0.00634352 0.00634518 1.66026E—06
15 0.00552971 0.00553097 1.25921E-06
Table 3
For t = 0.5, Comparison of the numerical results with exact solution u(x,7) and the absolute error
X Exact solution Approximate solution Absolute error
5 0.047890 0.0480769 1.86929E—-04
6 0.0336914 0.0337838 9.23846E—05
7 0.0249494 0.025000 5.05943E—05
8 0.0192008 0.0192308 2.9931E-05
9 0.0152251 0.0152439 1.88006E—05
10 0.0123639 0.0123762 1.23875E-05
11 0.0102374 0.0102459 8.48645E—06
12 0.00861468 0.00862069 6.00525E—06
13 0.00734857 0.00735294 4.36714E—-06
14 0.00634193 0.00634518 3.25085E—-06
15 0.0055285 0.00553097 2.4692E—06

4. Conclusions

In this paper, the variational iteration method [6-11]is applied to solving the Cauchy problem arising in one dimen-
sional nonlinear thermoelasticity with initial conditions, the method needs much less computational work compared
with traditional methods. We achieved a very good approximation with the actual solution of the equation by using
two terms of the iteration scheme derived above. It is evident that the overall results come very close to the exact solu-
tion even using only few terms of the iteration formula. Errors can be made smaller by taking new terms of the iteration
formulas. A clear conclusion can be draw from the numerical results that the variational iteration method provides
highly accurate numerical solutions without spatial discretizations for nonlinear differential equations. Finally, we point
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Table 4

For t = 0.5, comparison of the numerical results with exact solution 6(x,?) and the absolute error

X Exact solution Approximate solution Absolute error
5 0.0568199 0.0576923 8.72439E—-04
6 0.0401206 0.0405405 4.19969 E—04
7 0.0297742 0.030000 2.25784 E—04
8 0.0229452 0.0230769 1.31753 E—04
9 0.0182108 0.0182927 8.1886 E—05
10 0.014798 0.0148515 5.35004 E—05

11 0.0122587 0.0122951 3.64006 E—05
12 0.0103192 0.0103448 2.56109 E—05

13 0.00880499 0.00882353 1.85346 E—05
14 0.00760047 0.00761421 1.37398 E—05

15 0.00662677 0.00663717 1.03986 E—05

out that, the approximate solutions u,(x, t),04x,t), i = 1,2 are obtained according to the iterative Eqgs. (3.6) and (3.7) by
using version 5 Mathematica.
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